
The Empire Open Math Contest

Question 1. Derek the Deli owner recently realized he is running low on ham. The total number of
pounds of ham he has left is given by:
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A mysterious omniscient force tells us that this number H can be represented by a fraction of integers
p
q

with p, q sharing no natural number factors in common other than 1. Compute |p + q|
Solution: So there is one less than obvious logarithm identity that needs to be noticed:
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a

logn(x)

Playing with a = 1
2 , n = 2 makes it obvious why this is true.
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So really this entire problem is just computing
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Using the geometric series formula we calculate this to be 1
1− 1

4
= 4

3 So our final value is 3 + 4 = 7.

Question 2. Billy the Boar just stumbled upon a magic number generator while riding the G train. The
magic number generator accepts an integer x and produces an output |x3 + 9x2 + 15x + 7|. For how many
distinct integers x does Billy’s magic number generator produce a prime number?

Solution: So for this one we need to factor x3 + 9x2 + 15x + 7. Newtons formulas tell us that if this
factors we could factor this into (x+r1)(x+r2)(x+r3) = x3 +(r1 +r2 +r3)x2 +(r1r2 +r1r3 +r2r3)x+r1r2r3
if we know what the magic r1, r2, r3 are. Staring at the equations

r1 + r2 + r3 = 9
r1r2r3 = 7

It becomes apparent

1 + 1 + 7 = 9
1 ∗ 1 ∗ 7 = 7

So we factor this into (x + 1)2(x + 7). Recall a prime number is only divisible by the factors 1 and itself.
Since (x + 1)2 is a repeated factor we need that (x + 1)2 = 1. This means that either x = 0, x = −2. Sure
enough checking both we see that (0 + 7) = 7 and (−2 + 7) = 5 so both are prime and we have an answer
of 2.

Question 3. The year is 1776... John Adams rolls once a fair 20-sided Icosahedral die labelled (0-19) on
each of its sides. Immediately after this Benjamin Franklin then rolls once a fair 12-sided dodecahedral die
labelled (0-11) on each side. Finally John Hancock rolls once a fair 8-sided octahedral die labelled (0-7)
on each side. Let P be the probability that the product of all the 3 rolls is divisible by 7.

Another mysterious omniscient force tells us that this number P can be represented by a fraction of
natural numbers p

q
with p, q sharing no factors in common other than 1. Compute p + q

Solution: (Credit: Terence Coelho) We compute the probability that the product of the rolls is NOT
divisible by 7 (call it A) and compute 1 − A to get the probability that the product is divisible 7. So the
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product is not divisible by 7 if none of the dice rolled something divisible by 7. There are 20 − 3 ways to
do this with the first die (dont forget the 0!), 12 − 2 ways to do this with the second die and 8 − 2 ways
to do this with the last die. So the probability we want to compute is

1 − 17
20

10
12

6
8

Making some simplifications this is:
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20
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4

= 1 − 17
20
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4

= 1 − 17
4 ∗ 2 ∗ 4

= 1 − 17
32

= 15
32

Since these are in lowest terms we compute 15 + 32 = 47.

Question 4. (BONUS) Tommy the Tiger was buying some fancy jewelry in Jackson heights when he
suddenly noticed a mysterious 3000 carrot diamond cube behind one of the counters. The Jeweler offered
him the following discount plan

1) A 25% discount if he could compute
• first the number of colorings of the faces of a cube using 6 colors (each a single time) in a fixed

orientation (without considering any symmetries such as rotation/reflection). Call this A.
• secondly the number of colorings of the points of a cube in a fixed orientation (without con-

sidering any symmetries such as rotation/reflection) using the colors red and blue. Call this
B

Compute the value |A − B| and write it down in problem 4 of the answer sheet.
2) A 100% discount if he could compute

• firstly number of distinct colorings of the faces of a cube using 2 distinct colors while considering
rotational symmetry, call this A.

• secondly the number of distinct colorings of the edges of a cube using 2 distinct colors while
considering rotational symmetry, call this B

• thirdly the number of distinct colorings of the vertices of a cube using 2 distinct colors while
considering rotational symmetry, call this C

Compute |A − B + C| and write it down in problem 11 of the answer sheet.
Solving the first section (problem 4) counts as 1 point. Solving the second harder section (problem 11)

will count for 2 additional points.
Solution Part 1: There are A = 6! = 720 ways to color the cube with 6 distinct colors each used once

if we don’t consider different rotations the same. (Just put the cube in a fixed orientation and labelled the
sides 1-6. There are 6 choices for the color of side 1, there are 5 colors for the color of side 2, etc...). Now
there are 8 vertices of a cube, so again we can label the vertices 1 − 8, and now we color them as 2 choices
for vertex 1, 2 choices for vertex 2, etc... giving us B = 28 colorings in total.

|A − B| = 6! − 28 = 720 − 256 = 464
Solution Part 2: This problem definitely brutal if you don’t have a physical cube in your hand to look

at while solving it, and haven’t learned group theory. The most direct way to solve this will require using
Burnsides’ lemma from group theory. This basically states that the number of orbits under a group action
is equal to the sum of the count of the number of objects fixed by each element of the group all divided
by the size of the group. Stated formally that is:

|X/G| = 1
|G|

∑
g∈G

|Xg|

So the use of this theorem arises from the fact that if we consider a configuration of the colored cube up
to symmetry then we are considering an ”orbit” of that specific colored cube under action of the symmetry
group of the cube. So we really do want to count these orbits. This link provides a visual on all the
symmtries: https://garsia.math.yorku.ca/ zabrocki/math4160w03/cubesyms/



3

we first classify all the rotational symmetries of the cube.
There is 1 identity symmetry which changes nothing about the cube (you just get the same cube you

started with).
There are 6 distinct rotational symmetries of turning a particular face clockwise 90 degrees (It turns out

that turning a face counter clockwise, is the same turning its opposite face clockwise so we have covered
all the 90 degree turns this way). These symmetries cause 4 faces to move and and leave 2 faces fixed.

There are 3 rotational symmetries of the cube that involve turning about a face for 180 degrees (turning
180 degrees clockwise and counter clockwise are the same). These symmetries cause 4 faces to move (by
swapping sides) and 2 faces to remain fixed.

There are 6 symmetries of the cube that involve rotation along the center of any edge by 180 degrees.
This leaves the 2 edges fixed but moves all the other edges.

There are 8 symmetries of the cube that involve rotation around corner either 120 or 240 degrees. Since
there are 4 such diagonals and 2 valid degrees of rotation we get 8 such symmetries. These fix 2 vertices
and move everything else.

So the size of this symmetry group is |G| = 1 + 6 + 3 + 6 + 8 = 24 Now we count the number of red-blue
face colorings up to symmetry. There are naively 26 such colorings which remain totally unchanged under
the identity (the identity changes nothing so this is not a surprise). Under a 90 degree face rotation the
only way a colored cube remains unchanged is if the middle 4 faces are all the same color. So there are
23 ways to color the cube and satisfy this property (1 color for the front face, 1 for the back face and 1
for the middle 4). Under a 180 degree face rotation we don’t need the middle 4 to all be the same, just
opposite side faces of the middle 4 need to be the same. So there are now 24 ways to color a cube that’s
invariant under this rotation. Now we consider rotation along the edges. This is hard to visualize so for
ease its best to hold a cube in your hand. There will be 3 pairs of faces that swap sides so there are 23

ways to color the faces of a cube invariant under this. Lastly we have our corner rotations. This splits the
faces of the cube into two groups of 3 each group of 3 needing to have the same color so there are only 22

way to do this. All in all coloring the faces of the cube we have

26 + 6 ∗ 23 + 3 ∗ 24 + 6 ∗ 23 + 8 ∗ 22

24
= 10

Ways to do this. We are only 1/3 of the way done. We still have to color edges and vertices. We now
try to do the edges. There are 212 ways to color the edges of a cube invariant under the identity. There are
23 ways to color the edges of a cube invariant after a 90 degree face rotation. There are 26 ways to color
the edges of a cube invariant after a 180 degree face rotation. There are 27 ways to color the edges of the
cube with an edge rotation (the 2 opposite edges are each a degree of freedom and the remaining 10 edges
get swapped with each other so only 5 additional degrees of freedom). Finally for the corner rotation there
are 3 edges from each corner that are accounted for. The remaining 6 edges each form an orbit of size 3.
So we have 4 degrees of freedom here. Thus we have

212 + 6 ∗ 23 + 3 ∗ 26 + 6 ∗ 27 + 8 ∗ 24

24
= 218

Ways to uniquely color the edges. Now we do count coloring of the vertices. There are 28 colorings
invariant under the identity. There are 22 colorings which are invariant under face rotation by 90 degrees.
There are 24 colorings that are invariant under face rotation by 180 degrees. There are again 24 colors
that are invariant under edge rotation by 180 degrees. Finally the point rotation analysis becomes easy
there are 24 colorings invariant under point rotation (the two corners are free to color and the 6 middle
vertices can be broken up into 2 groups of 3 vertices that each form their own independent orbit). Thus
we compute

28 + 6 ∗ 22 + 3 ∗ 24 + 6 ∗ 24 + 8 ∗ 24

24
= 23

Thus we compute |10 − 218 + 23| = 185
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Question 5. The Egyptian God of the Underworld Anubis has decided to offer you a special hilton-gold-
honors-discount-redeem-anytime-fast-pass to the after life in place of the usual spiritual trials if you can
solve this 2022 version of a problem he saw in the 2002 BC AMC 12.

Let

an =


2, if n is divisible by 3 and 337
3, if n is divisible by 2 and 337

337, if n is divisible by 2 and 3
0, otherwise


Compute the value of

2021∑
n=1

an

Solution: So for this problem we first observe that 2 ∗ 3 ∗ 337 = 2022. So this function an only has
its undefined value at 2022 but luckily for us that is not part of the sum. Our next important detail is to
then count how many times will an take on a particular value.

So from 1...2022 inclusive there are only 2 values that are divisible by 3, 337. Since we aren’t considering
2022 in the sum then there is only 1 value. Through similar arguments: From 1...2022 inclusive there are
only 3 values that are divisible by 2, 337 but only 2 of those are not equal to 2022. Finally from 1...2022
there are 337 values divisible by 2, 3 but only 336 values when not consider 2022. Thus our sum is equal
to

2 ∗ (1) + 3 ∗ (2) + 337 ∗ (336) = 8 + 337 ∗ 336
Now this is some tedious arithmetic giving us 8 + 113232 = 113240.

Question 6. (Originally Proposed by Terence Coelho, Ph.D Rutgers University) Nicholas Cage invited
you to his birthday party in 4-dimensional Euclidean Space R4 with origin O. While at this birthday
party you and the guests begin to a play a variant of the game of twister where all of you are compressed
into a single point in the origin O except for your limbs which are transformed into rays from the origin.
Every guest has 2 hands so each guest transforms into exactly 2 rays coming from the origin. A valid
configuration of 4 dimensional twister is a set of rays emerging from the origin such that every pair of rays
in this set has an obtuse angle between them. What is the maximal number of guests that can play this
game before it becomes impossible to find a valid configuration of 4 dimensional twister.

Solution: So the observation that needs to be found here is that there can be at most d + 1 pairwise
obtuse rays in Rd. We can prove this by induction: suppose its true for 1...d − 1. Then in Rd you can
consider a set of d + 2 rays. Lets fix one ray r. Then we definitely know that there isn’t a ray directly
opposite of r and we also can consider the hyperplane Hr which is normal to r and passing through the
origin. Clearly all the other rays need to be on the other side of this hyperplane (rays in the hyperplane
would have a 90 degree angle from r and so thats not possible). Now wlog we can pretend r is the
unit vector e0 so that the projection of the remaining the rays onto the hyperplane Hr amounts simply
to taking those rays coordinates (v0, v1, ...) and consider (0, v1, ...). So what does it mean for to 2 rays
u1, u2 to be obtuse? it means the dot product between the rays is negative i.e. ∑d

n=0 u1
n ∗ u2

n < 0. Now
if we take the project into the hyperplane and compute the dot product the new dot product will be∑d

n=1 u1
n ∗u2

n = ∑d
n=0 u1

n ∗u2
n −u1

0u
2
0. Now that expression u1

0u
2
0 must be positive because it is the product of

2 negative numbers (since they lie on the opposite side of the hyperplane through the origin normal to r)
and so we conclude that ∑d

n=1 u1
n ∗ u2

n <
∑d

n=0 u1
n ∗ u2

n. So our d + 1 rays when projected to the hyperplane
must remain pairwise obtuse. But this is a contradiction since as part of our induction step we assumed
that there cannot be more than d pairwise obtuse rays in Rd−1 (and that hyperplane is clearly isomorphic
to Rd−1). So we conclude the original d + 1 pairwise obtuse rays couldn’t have existed, i.e. d + 2 pairwise
obtuse rays cannot exists in Rd. Now its worth pointing out that the equilateral d − simplex centered at
the origin gives us a model of d + 1 pairwise obtuse rays (by considering the rays passing through each of
the d + 1 corners). So we conclude that in Rd there can be at most d + 1 pairwise obtuse rays.
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Now the problem has some fluff where every guest gets reduced to 2 rays and the party takes place in
R4 so we can have at most 5 rays, so at most 2 guests can play (a third guest would be too many).

Question 7. Samantha the Software Engineer was counting her stacks of cash this past Sunday. She was
part of an unusual stock vesting plan where she is granted n4 + 2n2 + 1 shares per day for her nth day of
working (with her first day being n = 1). We wish to compute how many shares she has earned on her
100th day of working call this number B. For this answer just to compute the last 4 digits of B.

Solution: So there is a solution to this if you happen to know Faulhaber’s Formula. We will assume
you don’t because honestly who wants to keep track of all those crazy bernoulli numbers. So we need to
evaluate

100∑
n=1

n4 + 2n2 + 1 mod 1000

We can take a well informed guess that there is a family of polynomials P (n) such that P (n)−P (n−1) =
n4+2n2+1. It then follows that if P (0) = 0 then P (1) = 14+2n2+1 and P (2) = (24+2∗22+1)+(14+2∗12+1)
etc... so P (n) = ∑n

k=1 k4 + 2k2 + 1. And so P (100) mod 1000 is the quantity we are looking for. So now
we get to work. We assume P (n) = an5 + bn4 + cn3 + dn2 + en + f where the last constant f we will set
to 0. Then the condition:

P (n) − P (n − 1) = n4 + 2n2 + 1
Gives us:

a(n5 − (n − 1)5) + b(n4 − (n − 1)4) + c(n3 − (n − 1)3) + d(n2 − (n − 1)2) + e = n4 + 2n2 + 1

So now we need to expand these expressions via the binomial theorem

a(5n4 − 10n3 + 10n2 − 5n + 1) + b(4n3 − 6n2 + 4n − 1) + c(3n2 − 3n + 1) + d(2n − 1) + e = n4 + 2n2 + 1

So we find from this:

5a = 1
−10a + 4b = 0

10a − 6b + 3c = 2
−5a + 4b − 3c + 2d = 0
a − b + c − d + e = 1

Solving the equations from top to bottom we get a = 1
5 , b = 1

2 , c = 1, d = 1, e = 1−1/5+1/2−1+1 = 13
10

So then we conclude that

P (n) = 1
5

n5 + 1
2

n4 + n3 + n2 + 13
10

n

So now we need to evaluate P (100) mod 1000 i.e.

1
5

(100)5 + 1
2

(100)4 + (100)3 + (100)2 + 13
10

(100) mod 1000

Its easy to check that all but the linear term are divisible by 1000 and so we are simply interested in

13
10

(100) = 130

And that is the answer!
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Question 8. You decide to visit Starbuckstm one day and order an unusually large cup of coffee. When
you receive your cup you notice there is some unusual coffee art on the cup. The art can be described as
a brown “coffee region” on a white background. We describe the coffee region below:

• Consider the function f : R → R given by f(x) = x2 + 8x − 2
• Now consider the region of R2 given by the intersection of f(x) + f(y) ≤ 0 and f(x) − f(y) ≤ 0.

We shall call this the brown “coffee region”.

Compute the value of the area of this region. Round your answer to the nearest integer. If the answer
falls exactly at an integer p + 0.5, then round the answer down.

Solution: So we consider f(x) + f(y) ≤ 0 → x2 + 8x − 2 + y2 + 8y − 2 ≤ 0. This can be simplified
to x2 + 8x + y2 + 8y ≤ 4. We can add 32 to both sides to yield x2 + 8x + 16 + y2 + 8y + 16 ≤ 36.
Which now can be factored into (x + 4)2 + (y + 4)2 ≤ 62 Which we can recognize is a circle centered at
x = −4, y = −4 with radius 6. Which has area 36π. Now we consider our next constraint f(x) − f(y) ≤ 0.
This is x2 + 8x + y2 + 8y ≤ 0. This can regrouped as x2 − y2 + 8x − 8y ≤ 0 and then factored into
(x − y)(x + y + 8) ≤ 0. This describes a cone with center at x = −4, y = −4. It’s worth noting that
x − y = 0 and x + y + 8 = 0 are perpendicular from each other (you can use the slope formula to check
this) and so the cone splits the circle into exactly 4 equal sized sectors and only 2 of the sectors are be
filled in by the cone inequality. So the total area is actually half of this or 18π. We now compute 18 ∗ 3.14
and round that answer.

Question 9. Gandalf, Galadriel and the squad were fighting Sauron in Dol Gudur. After a few tough
hits from Sauron, Gandalf and Galadriel decide to unleash a very powerful spell which consists of drawing
a regular heptagon inside a unit circle and connecting every pair of vertices of this heptagon with a line
segment. Find the sum of the squares of all these line segments. Round your answer to the nearest integer.
If the answer falls exactly at an integer p + 0.5, then round the answer down.

Solution: (By Terence Coelho) It helps to sketch a heptagon with all its sides connected inscribed in
a circle. We do so below:

Figure 1. The graph

So these line segments seem intimidating at first until you recall that they are actually chords of a circle.
And that means it’s possible to understand the length of these chords using some simple formulae. We
first categorize the chords. There are 7 chords between two adjacent vertices and so they are the chord
of the angle in radians 2π

7 . There are there are 7 chords of the angle 4π
7 in radians and lastly there are 7

chords of the angle 8π
7 in radians. Now consider the diagram below:
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Figure 2. The chord length

It’s clear that the length of the chord forms a triangle with 2 sides equal to radius of our circle. Since we
are using the unit circle this radius is 1. So the length of this chord can be computed by the law of cosines
a2 + b2 = c2 + 2ab cos(θ). So our chord length is computed as c2 = 1 + 1 − 2 cos(θ) → c =

√
2 − 2 cos(θ).

Since we have three classes of chords we can then compute their lengths as
√

2 − 2 cos(2π
7 ),

√
2 − 2 cos(4π

7 ),√
2 − 2 cos(8π

7 ) respectively. Now we want the sum of the squares of the lengths so we really are trying to
compute

7


√

2 − 2 cos(2π

7
)

2

+

√
2 + 2 cos(4π

7
)

2

+

√
2 + 2 cos(8π

7
)

2
 =

7
(

6 + 2 cos(2π

7
) + 2 cos(4π

7
) + 2 cos(8π

7
)
)

Evaluating that last expression can be a little tricky. We can use Euler’s Formula to expand cosine in
terms of complex exponentials to yield

2 cos(2π

7
) + 2 cos(4π

7
) + 2 cos(8π

7
) =

e
2iπ

7 + e
−2iπ

7 + e
4iπ

7 + e
−4iπ

7 + e
8iπ

7 + e
−8iπ

7

Now we can put these into a standard form by recalling e
−2iπ

7 = e
12iπ

7 (going counterclockwise a small
amount the unit circle is the same as going clockwise a large amount). So we write this as:

e
2iπ

7 + e
12iπ

7 + e
4iπ

7 + e
10iπ

7 + e
8iπ

7 + e
6iπ

7

Now we recall that sum of all the roots of unity satisfies
n−1∑
k=0

e2kiπn = 0

And we have 6 distinct 7th roots of unity here. So it must be true that:

1 + e
2iπ

7 + e
12iπ

7 + e
4iπ

7 + e
10iπ

7 + e
8iπ

7 + e
6iπ

7 = 0
So we conclude that:

e
2iπ

7 + e
12iπ

7 + e
4iπ

7 + e
10iπ

7 + e
8iπ

7 + e
6iπ

7 = −1
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So our total squared sum is
7 (6 − (−1)) = 7 ∗ 7 = 49

Giving us our answer.

Question 10. (Originally proposed by Terence Coelho, Ph.D Rutgers University) In the exotic foreign
planet known as Philadelphia, PA, A day consists of 25 hours, an hour consists of 61 minutes, a minute
consists of 61 seconds and a second consists of 1001 miniseconds. Where whenever an hour passes the
minute hand makes a full revolution of the clock, when a minute passes the second hand makes a full
revolution, when a second passes the minisecond hand makes a full revolution. Suppose you have a
Philadelphia clock which has an hour hand, minute hand, second hand and millisecond hand that each
move at a constant speed throughout the day according to the above rates. The clock has 25 hour labels
all evenly spaced, so unlike a regular clock, the hour hand makes ONE revolution of this clock per day.
When the day starts, all the hands are aligned facing up. Over the course of a day how many times will
all 4 hands perfectly line up?

Solution: We begin by modelling our hands of a clock. Since the hands are uniformly moving in a
circle it makes sense to use complex exponentials to model them. We say the first hand moves according to
e2πit where t is measured in days. So every day the hour hand makes a full revolution of the day. The next
hand is the minute hand which moves according to e2πi25t. Interpreted literally this means the minute hand
makes a full revolution whenever 1

25 of a day has passed (i.e. a revolution occurs whenever an hour has
passed). We next model the second hand as e2πi25∗61t this means the second hand makes a full revolution
whenever 1

25∗61 of a day has passed (i.e. whenever a minute has passed). Now our minisecond hand gets
modelled as e2πi25∗61∗61t meaning that it makes a full revolution whenever a second has passed.As a reality
check at t = 0 all of these equal 1 on the unit circle, so our condition of all lining up at the start of the day
is met. So for all the hands to align means the hour, minute, second, millisecond function need to align:
i.e.

e2πit = e2πi25t = e2πi25∗61t = e2πi25∗61∗61t

Considered individually we have:

e2πit = e2πi25t → e2πi24t = 1

e2πi25t = e2πi25∗61t → e2πi25∗60t = 1

e2πi25∗61t = e2πi25∗61∗61t → e2πi25∗61∗60t = 1
Recall that t measures progress through the day so it ranges from 0 to 1 (0 inclusive and 1 non inclusive,

12:00AM this coming evening always counts as tomorrow!)
So e2πi24t = 1 can only happen if t = 0

24 , 1
24 , 2

24 , ...23
24

Similarly: → e2πi25∗60t = 1 can only happen if t is an integer multiple of 1
25∗60 . And lastly e2πi25∗61∗60t = 1

can only happen if t is an integer multiple of 1
25∗60∗61 . Now the last condition is extremely weak. It’s

implied by the previous condition. So we really have two conditions here:
t is an integer multiple of 1

25∗60 and t is an integer multiple of 1
24 . We can now compute the least common

multiple of 25 ∗ 60 and 24 to try to combine the two conditions into one. We compute: 25 ∗ 60 = 53 ∗ 3 ∗ 22

and 24 = 23 ∗ 3 to find their least common multiple 53 ∗ 3 ∗ 23. And so we now simply require that t is
an integer multiple of 2

53∗3∗23 and t is an integer multiple of 53

53∗3∗23 . Finally we can conclude, we simply
need to compute all the multiples of 2 ∗ 53 of the integers from 0 to 53 ∗ 3 ∗ 23 − 1. There are exactly
⌊53∗3∗23−1

n
⌋ + 1 such multiples divisible by n so we substitute:

⌊53 ∗ 3 ∗ 23 − 1
2 ∗ 53 ⌋ + 1 = 3 ∗ 22 + 1 = 13
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It’s also worth pointing out that this is simply GCD(24, 25 ∗ 60) + 1 for those a bit more arithmetically
skilled.
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